Measuring BAOs in future SKA surveys

Phil Bull*
University of Oslo

With C. Blake, F. Abdalla, M. Santos, P.G. Ferreira, A. Raccanelli, S. Camera, G. Zhao, J. Weller, D. Schwarz, M. Magliocchetti, K. Takahashi

*On behalf of the SKA Cosmology SWG
Baryon Acoustic Oscillations

• Coupled baryon-photon plasma in the early universe supports sound waves (speed = characteristic scale)

• This scale is left imprinted on the matter distribution after the baryons decouple from the photons
Baryon Acoustic Oscillations

- Coupled baryon-photon plasma in the early universe supports sound waves (speed = characteristic scale)
- This scale is left imprinted on the matter distribution after the baryons decouple from the photons
- Measurements of the galaxy clustering pattern allow us to recover it

→ Standard Ruler

Anderson et al. (2012)
Science with distance measures

- Measure BAO distance scale in radial + transverse directions (monopole and/or quadrupole)
 \[\rightarrow \text{expansion rate and angular diameter distance} \]
Science with distance measures

- Measure BAO distance scale in radial + transverse directions (monopole and/or quadrupole)
 → expansion rate and angular diameter distance

- Probes dark energy, spatial curvature, energy content

- Useful low-redshift anchor for CMB measurements

Anderson et al. (2014)
Systematics

- BAO scale is remarkably robust to systematics
 → measuring only the *location* of a feature
- Non-linearities etc. induce ~0.2% shift in BAO scale (small, but needs to be accounted for)
Systematics

- BAO scale is remarkably robust to systematics
 → measuring only the location of a feature
- Non-linearities etc. induce ~0.2% shift in BAO scale
 (small, but needs to be accounted for)

Reconstruction

- Galaxy distribution distorted by bulk flows on large scales
 → broadens the BAO peak
- Use observed density field + linear theory to “wind back” the distortion
BAO with the SKA

HI galaxy redshift survey

Measure redshifts for individually-detected galaxies (21cm line gives redshift)

✔ Tried-and-tested method in the optical
✔ Relatively “clean” in terms of foregrounds/systematics
✔ Phase 2 will cover **unprecedentedly large volume**

✗ Survey volume limited for Phase I sensitivity
✗ Mostly probes regimes that are already covered by optical surveys
BAO with the SKA

HI intensity mapping

No need to detect individual galaxies to access large scales → map the unresolved redshifted HI emission

✔ Very fast; no thresholding (“uses all the photons”)
✔ Can survey extremely large volumes
✔ Phase I competitive with large optical surveys!

✗ New method; relatively untested
✗ Potentially difficult foregrounds/systematics (Wolz, Santos)
✗ Phase I design sub-optimal; need autocorrelations
Forecasting

Combined Fisher forecasting formalism for IM and galaxy surveys
Bull, Ferreira, Patel, Santos (2014)

Code publicly available at gitorious.org/radio-fisher

Phase I

- Galaxy survey: 10 million galaxies; 5,000 sq. deg.
- IM survey: 10,000 hours; 25,000 sq. deg.; autocorrelation mode

Phase 2

- Galaxy survey: 750 million galaxies; 30,000 sq. deg.
- IM survey: Dense aperture array? (e.g. MFAA)
Distance scale forecasts

Some data taken from Font-Ribera et al. (2014)
Distance scale forecasts

\[\frac{\sigma_{D_V}}{D_V} \]

\(z \)

BOSS
SKA1 HI gal.
Distance scale forecasts

\[\frac{\sigma_{D_V}}{D_V} \]

\[\tilde{z} \]

- BOSS
- SKA1 HI gal.
- SKA1-MID B1 IM
- SKA1-MID B2 IM
- SKA1-SUR B1 IM
- SKA1-SUR B2 IM
Distance scale forecasts

\[\frac{\sigma_{D_v}}{D_v} \]

- BOSS
- SKA1 HI gal.
- SKA1-MID B1 IM
- SKA1-MID B2 IM
- SKA1-SUR B1 IM
- SKA1-SUR B2 IM
- Euclid
- DESI

\[z \]

0.00 0.05 0.10 0.15 0.20 0.25

0.00 0.01 0.02 0.03 0.04
Distance scale forecasts

![Graph showing distance scale forecasts with various datasets and error bars.](image-url)
Dark energy constraints
Dark energy constraints
Dark energy constraints
Summary

BAO: Precision cosmology probe for the SKA

SKA Phase 1

- IM survey competitive with DESI/Euclid!
- Need autocorrelations. IM technique not yet proven.

SKA Phase 2

- Best-in-class galaxy redshift survey
- Only LSST can compete in terms of volume probed
[EXTRA SLIDES]
Power spectrum

$\Delta P/P$

k [Mpc$^{-1}$]
Including low-z BAO

Combined w. Planck + SKA1 gal.
SKA specifications

<table>
<thead>
<tr>
<th></th>
<th>Phase 1 MID</th>
<th></th>
<th>Phase 1 SUR</th>
<th></th>
<th>Phase 2</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Band 1</td>
<td>Band 2</td>
<td>Band 1</td>
<td>Band 2</td>
<td>Band 1</td>
<td>Band 2</td>
</tr>
<tr>
<td>T_{inst} [K]</td>
<td>28</td>
<td>20</td>
<td>50</td>
<td>30</td>
<td>TBC</td>
<td>TBC</td>
</tr>
<tr>
<td>z_{min}</td>
<td>0.35</td>
<td>0.00</td>
<td>0.58</td>
<td>0.00</td>
<td>0.35</td>
<td>0.00</td>
</tr>
<tr>
<td>z_{max}</td>
<td>3.05</td>
<td>0.49</td>
<td>3.05</td>
<td>1.18</td>
<td>3.05</td>
<td>0.49</td>
</tr>
<tr>
<td>v_{min} [MHz]</td>
<td>350</td>
<td>950</td>
<td>350</td>
<td>650</td>
<td>350</td>
<td>950</td>
</tr>
<tr>
<td>v_{max} [MHz]</td>
<td>1050</td>
<td>1760</td>
<td>900</td>
<td>1670</td>
<td>1050</td>
<td>1760</td>
</tr>
<tr>
<td>D_{dish} [m]</td>
<td>15</td>
<td>15</td>
<td>12</td>
<td>12</td>
<td>15</td>
<td>15</td>
</tr>
<tr>
<td>δv [kHz]</td>
<td>50</td>
<td>50</td>
<td>50</td>
<td>50</td>
<td>TBC</td>
<td>TBC</td>
</tr>
<tr>
<td>Ω_{sur} [10^3 deg2]</td>
<td>25</td>
<td>25</td>
<td>25</td>
<td>25</td>
<td>25</td>
<td>25</td>
</tr>
<tr>
<td>$N_{\text{dish}} \times N_{\text{beam}}$</td>
<td>254×1</td>
<td>254×1</td>
<td>60×36</td>
<td>60×36</td>
<td>TBC</td>
<td>TBC</td>
</tr>
</tbody>
</table>
IM: autocorrelation vs. interferometry

The plot shows the relationship between κ and k_\perp [Mpc$^{-1}$] for 15m dishes. The graph compares the SD (red) and Int. (blue) regions of the correlation. The vertical dashed lines indicate the range of k_\perp for 15m dishes.
~ BINGO

~ MeerKAT/ASKAP

~ SKA1

~ Euclid/LSST