Multiple supermassive black hole systems: SKA’s future leading role

Roger Deane
University of Cape Town

Zsolt Paragi (JIVE), Matt Jarvis (Oxford / UWC), Mickael Coriat (UCT), Sandor Frey (SGO), Gianni Bernardi (Rhodes / SKA-SA / Harvard), Ian Heywood (CSIRO / Rhodes), Hans-Rainer Kloeckner (MPIfR)
two primary messages:

1. multiple SMBH science will become mainstream with next-generation facilities

2. SKA will lead through broad range of techniques and perspectives
from the **galaxy evolution** viewpoint

micro/millil-pc | **kpc**
galaxy mergers/interactions are a major observational focus
galaxy mergers/interactions are a major observational focus
galaxy mergers/interactions are a major observational focus
dual/binary AGN are not (yet)
candidate dual/binary AGN in 2014
(from direct imaging)

squares = X-ray triangles = optical/NIR stars = radio

- 0402+379
- J1502S
- 3C75
- NGC 326
- NGC 6240
- Mrk 739
- Mrk 463
- NGC 3393
- SDSS J1715+6008
- IRAS 05589+2828
- SDSS J0952+2552
- CID-42
- LBQS 0103-2753
- SDSS J1108+0659
- SDSS J1131-0204
- SDSS J1146+5110
- SDSS J1332+0606
- CXO J1426+35

redshift

projected separation / parsec

triangles = optical/NIR
candidate dual/binary AGN in 2004
(from direct imaging)

squares = X-ray triangles = optical/NIR stars = radio
candidate dual/binary AGN in 2014
(from direct imaging)

squares = X-ray triangles = optical/NIR stars = radio

- 0402+379
- J1502S
- 3C75
- NGC 326
- NGC 6240
- Mrk 739
- Mrk 463
- NGC 3393
- SDSS J1715+6008
- IRAS 05589+2828
- SDSS J0952+2552
- CID-42
- LBQS 0103-2753
- SDSS J1108+0659
- SDSS J1131-0204
- SDSS J1146+5110
- SDSS J1332+0606
- CXO J1426+35
candidate dual/binary AGN 2014
(+ non-imaging)

squares = X-ray triangles = optical/NIR stars = radio

0402+379 J1502S 3C75 NGC 326 NGC 6240 Mrk 739 Mrk 463 NGC 3393 SDSS J1715+6008 IRAS 05589+2828 SDSS J0952+2552 CID-42 LBQS 0103-2753 SDSS J1108+0659 SDSS J1131-0204 SDSS J1146+5110 SDSS J1332+0606 CXO J1426+35 SDSS 1536+0441 OJ287

double-peaked BLR optical variability
candidate dual/binary AGN 2014
(+ non-imaging)

squares = X-ray
triangles = optical/NIR
stars = radio

Milky Way SMBH Schwartzchild radius

redshift vs. projected separation / parsec
dual/binary AGN orbital evolution

<1 pc ~10 pc ~kpc

separation
dual/binary AGN orbital evolution

<1 pc ~10 pc ~kpc

separation

dynamical friction

1000s of examples
(e.g. Koss+2011, Liu+2011)
dual/binary AGN orbital evolution

<1 pc ~10 pc ~kpc

`hardened' binary: in-spiral driven by stellar 3-body interactions

dynamical friction

NGC 3393 150 pc Fabbiano+2011

0402+379 7 pc Rodriguez+2006

J1502S 138 pc Deane+2014

1000s of examples (e.g. Koss+2011, Liu+2011)
`hardened' binary:
in-spiral driven by stellar
3-body interactions

gravitational radiation

candidates from spectroscopic & periodic light curve signatures
(e.g. Valtonen+2008; Boroson & Lauer 2009)

<1 pc

~10 pc

~kpc

dual/binary AGN orbital evolution

separation

0402+379
7 pc
Rodriguez+2006

J1502S
138 pc
Deane+2014

NGC 3393
150 pc
Fabbiano+2011

1000s of examples
(e.g. Koss+2011, Liu+2011)
binary separation ‘coverage’ with SKA

<1 pc ~10 pc ~kpc

separation

gravitational radiation

`hardened' binary:
in-spiral driven by stellar 3-body interactions

dynamical friction

pulsar timing (+ variability)

radio-jet morphology

direct imaging of flat-spectrum sources
direct imaging

• flat-spectrum sources (with jets, multi-wavelength counterparts, etc.)

• image-splitting in lensing searches

• super-resolution with polarization

• SKA/radio will lead due to:
 • insensitivity to dust/gas attenuation
 • raw sensitivity
 • angular resolution
max GW frequency of SMBH binaries

assumes:
- binary SMBHs have angular separation $= 2$ PSFs
- circular orbits
- equal mass $10^8 \, M_\odot$ SMBHs

pulsar timing array sensitivity

~ 1 day

~ 30 years
radio-jet morphology signatures
(aka “corkscrew relics”)

Rodriguez+2006
VLBA 8 GHz

0402+379
JVLA 1.4 GHz

Deane+2014
Massive black hole binaries in active galactic nuclei

M. C. Begelman*, R. D. Blandford† & M. J. Rees‡

* Department of Astronomy, University of California, Berkeley, California 94720
† Theoretical Astrophysics, California Institute of Technology, Pasadena, California 91125
‡ Institute of Astronomy, Madingley Road, University of Cambridge, Cambridge CB3 0HA, UK

Most theoretical discussions of active galactic nuclei (including quasars) attribute their energy production either to an accreting black hole or to a precursor stage—for instance a dense star cluster or a supermassive star—whose inevitable end point is a massive black hole. We explore here the possibility that some active nuclei may contain two massive black holes in orbit about each other. This hypothesis suggests a new interpretation for the observed bending and apparent precession of radio jets emerging from these objects and may indeed be verified through detection of the direct consequences of orbital motion.
a simple precessing jet model (ala SS433)

SS 433
credit: Blundell & Bowler, NRAO/AUI/NSF
a simple precessing jet model (ala SS433)

SS 433
credit: Blundell & Bowler, NRAO/AUI/NSF

~0.1 pc
A simple processing jet model (ala SS433)

SS 433
credit: Blundell & Bowler, NRAO/AUI/NSF

~0.1 pc

SMBH binaries scaled up by 5-8 dex?
predicted binary SMBH in-spiral rates

binary separation evolves from 1 kpc to <1pc in ~few 10s of Myr
predicted binary SMBH in-spiral rates

binary separation evolves from 1 kpc to <1pc in \(\text{few } 10\text{s of Myr} \)

comparable to radio jet lifetimes of \(\text{~10 Myr} \)
radio-jet morphology signatures
(aka “corkscrew relics”)
radio-jet morphology signatures
(aka “corkscrew relics”)
radio-jet morphology signatures
(aka “corkscrew relics”)

7 pc
7 kpc

<100 micro-arcsecond resolution

pulsar timing array

Deane+2014
Rodriguez+2006
stochastic GW background spectrum

- standard spectrum $\alpha = -2/3$ (assumes circular orbits)
- should change at ~ 10 nanoHz (when stellar scattering and gas dynamics dampen signal)
- binary eccentricity important in the nanoHz regime
- triple systems also lead to high eccentricities (via Kozai-Lidov mechanism) and recoiling/ejected SMBHs (Hoffman & Loeb 2007; Blecha+2011)
- therefore, very important to measure GW spectrum, not just single detection, from a galaxy evolution perspective to understand binary SMBH environment coupling

see Janssen talk
environment coupling
(with SKA and other facilities)

stellar `scouring'

- mass deficits 1-10 times mass of SMBH binary
- flattens inner density profile of galactic halo

molecular gas dynamics
- NGC 1433 CO (3-2)
- ALMA 24 pc spatial res.
- Coombes+2013

HI emission and absorption
- HI abs. in binary SMBH 0402+379
- Rodriguez+2009, Morganti+2009

variability/transients
- quasi-periodic accretion, light curves

Nuclear Structure of Bright Galaxies

- $M_{\text{gal}} \lesssim 10^{10} M_{\odot}$
- $M_{\text{gal}} \gtrsim 10^{10} M_{\odot}$

stellar `scouring'

- mass deficits 1-10 times mass of SMBH binary
- flattens inner density profile of galactic halo

molecular gas dynamics
- NGC 1433 CO (3-2)
- ALMA 24 pc spatial res.
- Coombes+2013

HI emission and absorption
- HI abs. in binary SMBH 0402+379
- Rodriguez+2009, Morganti+2009

variability/transients
- quasi-periodic accretion, light curves

R o g e r D e a n e • A A S K A 1 4 • 1 3 / 6 / 2 0 1 4
Roger Deane

AASKA14

13/6/2014

summary plot

inspiral/mergers

direct imaging

radio-jet

morphology

pulsar timing

arrays

Milky Way SMBH Schwartzchild radius

inspiral/mergers via transients?
1. multiple SMBH science will become mainstream with next-generation facilities

2. the SKA is likely to lead through broad range of techniques and perspectives
summary

- most modes of the SKA will probe cosmic SMBH evolution history
- will do so over > 6 dex of orbital separation dynamic range
- high complimentarily between imaging & non-imaging methods which must form a consistent, cohesive picture
- SKA could lead the way ahead of other large multi-wavelength facilities
- gravitational wave astronomy will provide deep insights on galaxy evolution