Measuring Magnetism in the Milky Way with the SKA

Sui Ann Mao (MPIfR) for Marijke Haverkorn (Radboud University/Leiden Observatory)
Takuya Akahori, Ettore Carretti, Katia Ferrière, Peter Frick, Bryan Gaensler, George Heald, Melanie Johnston-Hollitt, David Jones, Tom Landecker, Aris Noutsos, Niels Oppermann, Wolfgang Reich, Timothy Robishaw, Anna Scaife, Dominic Schnitzeler, Rodion Stepanov, Xiaohui Sun, Russ Taylor, on behalf of the Cosmic Magnetism SWG
Why measure B fields in the MW?

- **Big Question**: What is the origin and evolution of interstellar magnetic fields? (see talks by R. Beck, G. Heald)

- **Milky Way as the ideal testbed**:
 - identification of large-scale field reversals
 - B fields of discrete objects (e.g. SNRs, HII regions)
 - probe turbulent power spectrum down to small scales
 - excellent observations of the multi-phase ISM
 - MW is a significant foreground to cosmological experiments: CMB polarization, epoch of reionization, propagation of UHECRs
Why is the SKA a game changer?

Tools:
• extragalactic RM grid (~ 1 source/deg2)
• pulsar RM (~ current # 679)
• diffuse pol. synchrotron emission
• Zeeman splitting (T. Robishaw’s talk)

Major Improvements the SKA will provide:
✓ much denser extragalactic RM grid
✓ much denser pulsar grid with reliable distances
✓ high spatial and FD resolution Faraday tomography

This talk:
• global magnetic field configuration
• turbulent magneto-ionic medium
• other exciting topics
Global Magnetic Field Configuration: Current Understanding

B_{disk}: • 1 confirmed large-scale reversal

• symmetric across mid-plane

van Eck et al. 2011
Global Magnetic Field Configuration: Current Understanding

B_{halo}: • dipolar toroidal? spiral?

• X-shape fields?

+ve RM in Q1 $b>0^\circ$ likely produced by a local magnetized bubble
Global Magnetic Field Configuration: Testing Dynamo Models

• measure global B field configuration → test dynamo models

• dynamo predicts:
 – axisymmetric quadrupolar disk field
 – dipolar halo field

• a bisymmetric halo field: could suggest a primordial origin

• disk and halo fields of different parities can co-exist
Global Magnetic Field Configuration: What the SKA will bring

Pulsars:
SKA1: ~ 10,000 normal pulsars
SKA2: parallax distances out to 30 kpc
✓ improve n_e distribution model
✓ many more sightlines w/RMs: wavelet analysis

Extragalactic sources:
SKA1-SURVEY: up to $x10^3$ denser RM grid
✓ identify sightlines affected by local structures

Diffuse Polarized Emission
SKA-low + SURVEY: Faraday tomography
✓ Faraday-thick structures + superb FD resolution
✓ estimate RM contributions from local structures

Kramer & Stepanov et al. 2002
Magnetized Turbulence: RM Structure Functions

- slope of the power spectrum
- energy injection scale

Interarm ~ 100 pc

Arm \sim few pc

Armstrong+ 1995

Haverkorn+ 2008
Magnetized Turbulence: Polarization Gradient

New Diagnostic: Gradient of the polarization vector

Gaensler et al 2011
Magnetized Turbulence: Polarization Gradient

Burkhart et al 2012, see also Iacobelli et al. 2014
Magnetize Turbulence: What the SKA will bring

Extragalactic sources:
SKA1-SURVEY: up to $x10^3$ denser precise RM grid

- reliably probe SF down to arcmin scales
 - obtain slope & outer-scale for the whole sky

Diffuse Polarized Emission
SKA-low+SURVEY:
- high resolution and sensitivity Faraday tomography
 - apply polarization gradient technique to map Mach number everywhere in the Galaxy

Stil et al. 2011
Other Exciting Topics

- Magnetized Jets from Massive Stars
 - Carrasco-Gonzalez et al. 2010

- Supernova Remnants
 - Landecker et al. 2010

- The Galactic Center
 - LaRosa et al. 2000

- HII regions
 - Harvey-Smith et al. 2011
Summary

<table>
<thead>
<tr>
<th>Galactic magnetic field component</th>
<th>CURRENT</th>
<th>SKA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Global Field Configuration</td>
<td>one confirmed reversal some vertical components?</td>
<td>direct comparison to dynamo models/simulations</td>
</tr>
<tr>
<td>Magnetized Turbulence</td>
<td>Energy injection scale: few pc in arm regions 100 pc in interarm regions</td>
<td>Map outer scales → turbulence injection mechanisms</td>
</tr>
<tr>
<td></td>
<td>transonic turbulence in selected regions</td>
<td>Map Mach number throughout the Galaxy</td>
</tr>
<tr>
<td>Others</td>
<td>2 YSO jets Handful of SNRs Large angular extent HII regions Galactic center “checkerboard” pattern?</td>
<td>• Increase the statistics of measurement of B field in discrete objects • Connect the GC field to the overall global field</td>
</tr>
</tbody>
</table>