Synergies between SKA and ALMA: observations of Nearby Galaxies

Rosita Paladino
Università di Bologna - INAF IRA

and

Jan Brand, Emanuela Orrù, Viviana Casasola, Elisabetta Liuzzo, Marcella Massardi, Arturo Mignano
Some still open questions about star formation:

- Importance of local (disk or cloud instability) versus global effects (spiral density waves, tidal forces, magnetic fields) in triggering SF.
- How the properties of SF depend on various environmental parameters.
- How SF might differ in nuclear regions or in burst and quiescent modes.
- Which is the role of the relativistic phase (cosmic rays and magnetic field) in SF processes.
- Do giant molecular clouds care about the galactic structure?
In our own Galaxy

CO(2-1) map with IRAS point sources
In our own Galaxy

Dust continuum APEX map at 0.87 mm

C18O(1-0) contours

A GMC 178 x 41 pc @ 7.5 kpc

In our own Galaxy

Dust continuum APEX map at 0.87 mm

A GMC 178 x 41 pc @ 7.5 kpc
Six substructures detected 1-2 pc large

In our own Galaxy

Radio detections indicating that these three candidates are **Ultra compact HII regions**

In our own Galaxy

Ionized gas
Shock shell
Dense molecular gas

G331.512-0.103
Diameter ~ 1pc

Colour: ALMA 13CO$^+$ (4-3)
Black contours: ALMA SiO(8-7)
Red contours: 8.64GHz

M51 @ 7.6 Mpc

1.4 GHz image (VLA)
CO(1-0) contours (IRAM)
Resolution ~ 1 arcsec ~ 40 pc

Evidence of GMCs sensitive to their galactic environments
In very nearby galaxies: M51, M33, SMC

(Hughes et al. 2013)

M33 @ 840 kpc

CO(2-1) (IRAM – 30m)
Resolution ~ 12 arcsec ~ 49 pc

Druard et al., 2014
NGC3627 @ 11 Mpc

CO(1-0) image (BIMA)
Resolution ~ 6 arcsec ~ 320 pc
Helfer et al., 2003

CO(1-0) image (IRAM)
1.4 GHz contours (VLA)
Resolution ~ 2 arcsec ~ 100 pc

Paladino et al., 2008

Typical size of a Milky Way GMC is 40 pc
at 10 Mpc we don't resolve them
Arp 217 @ 18.7 Mpc

HST image
3.6 cm contours (VLA)

<table>
<thead>
<tr>
<th></th>
<th>$\alpha^{1.3\text{cm}}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arp 217 A</td>
<td>0.2 ± 0.3</td>
</tr>
<tr>
<td>Arp 217 B</td>
<td>-0.0 ± 0.2</td>
</tr>
<tr>
<td>Arp 217 C</td>
<td>-0.7 ± 0.4</td>
</tr>
<tr>
<td>Arp 217 D</td>
<td>...</td>
</tr>
<tr>
<td>Arp 217 E</td>
<td>0.4 ± 0.2</td>
</tr>
</tbody>
</table>

$S_v \sim v^{-\alpha}$

3 thermal sources
1 non-thermal source

Aversa et al., 2011
To estimate the relative fluxes of non-thermal and thermal sources

Standard non-thermal source: **SNR Cas A @ 2.8 kpc** (the canonical young core-collapse SNR in the galaxy)

- 2260 Jy @ 1.4 GHz
- 740 Jy @ 5 GHz
- 612 Jy @ 8 GHz

(Baars et al., 1977)

Standard thermal source: **W49 A @ 14.1 kpc** (one of the most luminous star forming regions in the Galaxy)

- 47.2 Jy @ 1.4 GHz
- 57.7 Jy @ 5 GHz
- 66 Jy @ 8 GHz

(Mezger et al., 1967)
1σ detection sensitivity of Cas A and W49 A up to 100 Mpc

<table>
<thead>
<tr>
<th>Distance (Mpc)</th>
<th>Cas A (μJy)</th>
<th>W49A (μJy)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1.4 5 8 GHz</td>
<td>1.4 5 8 GHz</td>
</tr>
<tr>
<td>10</td>
<td>177 58 48</td>
<td>93 114 131</td>
</tr>
<tr>
<td>25</td>
<td>28 9 8</td>
<td>15 18 21</td>
</tr>
<tr>
<td>50</td>
<td>7 2.3 2</td>
<td>3.7 4.6 5</td>
</tr>
<tr>
<td>75</td>
<td>3 1 0.8</td>
<td>1.7 2 2.3</td>
</tr>
<tr>
<td>100</td>
<td>2 0.6 0.5</td>
<td>0.9 1.1 1.3</td>
</tr>
</tbody>
</table>

Band, Freq (MHz), Max res (arcsec), Sensitivity (μJy hr\(^{-1/2}\))

<table>
<thead>
<tr>
<th>Band</th>
<th>Freq (MHz)</th>
<th>Max res (arcsec)</th>
<th>Sensitivity (μJy hr(^{-1/2}))</th>
</tr>
</thead>
<tbody>
<tr>
<td>SKA-1 sur</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>650 - 1670</td>
<td>1.9 – 0.8</td>
<td>5.6</td>
</tr>
<tr>
<td>SKA-1 mid</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>950 - 1760</td>
<td>0.32 – 0.17</td>
<td>1.4</td>
</tr>
<tr>
<td>4</td>
<td>2800 - 5180</td>
<td>0.11 – 0.06</td>
<td>0.75</td>
</tr>
<tr>
<td>5</td>
<td>4600 - 13800</td>
<td>0.07 – 0.02</td>
<td>0.43</td>
</tr>
</tbody>
</table>
1σ detection sensitivity of Cas A and W49 A up to 100 Mpc

<table>
<thead>
<tr>
<th>Distance (Mpc)</th>
<th>Cas A (µJy)</th>
<th>W49A (µJy)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1.4 5 8 GHz</td>
<td>1.4 5 8 GHz</td>
</tr>
<tr>
<td>10</td>
<td>177 58 48</td>
<td>93 114 131</td>
</tr>
<tr>
<td>25</td>
<td>28 9 8</td>
<td>15 18 21</td>
</tr>
<tr>
<td>50</td>
<td>7 2.3 2</td>
<td>3.7 4.6 5</td>
</tr>
<tr>
<td>75</td>
<td>3 1 0.8</td>
<td>1.7 2 2.3</td>
</tr>
<tr>
<td>100</td>
<td>2 0.6 0.5</td>
<td>0.9 1.1 1.3</td>
</tr>
</tbody>
</table>

SKA-1 mid @ 1.4 GHz would detect both Cas A and W 49 A in galaxies up to 100 Mpc at 1 σ in ~ 2 hrs
@ 5 and 8 GHz 1 hr is enough for a 1 σ detection

In early science phase observations 4x longer

<table>
<thead>
<tr>
<th>Band</th>
<th>Freq (MHz)</th>
<th>Max res (arcsec)</th>
<th>Sensitivity (µJy hr$^{-1/2}$)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>SKA -1 sur</td>
</tr>
<tr>
<td>2</td>
<td>650 - 1670</td>
<td>1.9 – 0.8</td>
<td>5.6</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>SKA-1 mid</td>
</tr>
<tr>
<td>2</td>
<td>950 - 1760</td>
<td>0.32 – 0.17</td>
<td>1.4</td>
</tr>
<tr>
<td>4</td>
<td>2800 - 5180</td>
<td>0.11 – 0.06</td>
<td>0.75</td>
</tr>
<tr>
<td>5</td>
<td>4600 - 13800</td>
<td>0.07 – 0.02</td>
<td>0.43</td>
</tr>
</tbody>
</table>
SKA resolution

<table>
<thead>
<tr>
<th></th>
<th>Max res (arcsec)</th>
<th>Scale (pc) @ 10 Mpc</th>
<th>Scale (pc) @ 25 Mpc</th>
<th>Scale (pc) @ 50 Mpc</th>
<th>Scale (pc) @ 75 Mpc</th>
<th>Scale (pc) @ 100 Mpc</th>
</tr>
</thead>
<tbody>
<tr>
<td>SKA – 1 sur 1.4 GHz</td>
<td>0.9</td>
<td>44</td>
<td>110</td>
<td>218</td>
<td>327</td>
<td>436</td>
</tr>
<tr>
<td>SKA 1 mid 1.4 GHz</td>
<td>0.22</td>
<td>10</td>
<td>27</td>
<td>53</td>
<td>80</td>
<td>106</td>
</tr>
<tr>
<td>SKA 1 mid 5 GHz</td>
<td>0.06</td>
<td>3</td>
<td>7</td>
<td>14</td>
<td>22</td>
<td>29</td>
</tr>
<tr>
<td>SKA 1 mid 8 GHz</td>
<td>0.04</td>
<td>2</td>
<td>5</td>
<td>9</td>
<td>14</td>
<td>20</td>
</tr>
</tbody>
</table>

SKA-1 sur will be able to identify GMCs up to 10 Mpc but not to resolve single compact HII regions.

SKA-1 mid will be able to identify GMCs up to 100 Mpc.

SKA 2

20x better resolution compact HII regions resolved at all frequencies in galaxies at 100 Mpc.

At 10 Mpc scales of 0.1 pc will be accessible.
ALMA resolution

<table>
<thead>
<tr>
<th>Band</th>
<th>Freq (GHz)</th>
<th>FoV (arcsec)</th>
<th>min res (arcsec)</th>
<th>max res (arcsec)</th>
<th>Scale @ 10 Mpc (pc)</th>
<th>50 Mpc (pc)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>31.3 - 45</td>
<td>145 - 135</td>
<td>13 - 9</td>
<td>0.14 - 0.1</td>
<td>5</td>
<td>24</td>
</tr>
<tr>
<td>2</td>
<td>67 - 90</td>
<td>91 - 68</td>
<td>6 - 4.5</td>
<td>0.07 - 0.05</td>
<td>2.5</td>
<td>12</td>
</tr>
<tr>
<td>3</td>
<td>84 - 116</td>
<td>72 - 52</td>
<td>44.9 - 3.6</td>
<td>0.05 - 0.038</td>
<td>2</td>
<td>9</td>
</tr>
<tr>
<td>4</td>
<td>125 - 163</td>
<td>49 - 37</td>
<td>3.3 - 2.5</td>
<td>0.035 - 0.027</td>
<td>1.3</td>
<td>7</td>
</tr>
<tr>
<td>6</td>
<td>211-275</td>
<td>29-22</td>
<td>2.0 - 11.1</td>
<td>0.021 - 0.016</td>
<td>0.77</td>
<td>5</td>
</tr>
</tbody>
</table>

Not yet available
In Band 2 DCO⁺ (1-0); DCN and NH₂D predicted from simulations in starburst or CR enhanced regions (Bayet 2010)

CO(1-0); HCN(1-0); HCO⁺ (1-0)

DCO+ (2-1)

CO (2-1); HCN (3-2); HCO+ (3-2); SO₂

ALMA will provide in band 3 a spatial resolution of some pc in galaxies up to 50 Mpc.
ALMA will allow observations of the continuum dust emission

W49A
JCMT-SCUBA image at 0.4 mm
Resolution = 8 arcsec

SMA image at 1.1 mm
Resolution = 2.5 arcsec

Galvàn-Madrid et al., 2014
Comparison between thermal free-free and molecular emission

Lines and continuum observations in 4 GHz bands @ 220 and 230 GHz
resolution: 2 arcsec to 0.8 arcsec
More than 50 molecules (isotopologues) Have been identified.

CO(2-1) integrated flux
$1.23553 \times 10^5 \text{ Jy km s}^{-1}$
rms = 4.8 Jy beam$^{-1}$ km s$^{-1}$

W49A
CO(2-1) SMA image
Contours 3.6 cm free free emission

Galván-Madrid et al., 2014
Comparison between thermal free-free and molecular emission

W49A
CO(2-1) SMA image
Contours 3.6 cm free free emission

W49A zoomed-in
CO(2-1) SMA image
Contours 3.6 cm free free emission

Galván-Madrid et al., 2014
Comparison between thermal free-free and molecular emission

W49A
CO(2-1) SMA image
Contours 3.6 cm free free emission

W49A
HC$_3$N SMA image
Contours 3.6 cm free free emission

Galván-Madrid et al., 2014
Comparison between thermal free-free and molecular emission

W49A
CO(2-1) SMA image
Contours 3.6 cm free free emission

W49A
SO$_2$ SMA image
Contours 3.6 cm free free emission

Galván-Madrid et al., 2014
Comparison between thermal free-free and molecular emission

W49A
CO(2-1) SMA image
Contours 3.6 cm free free emission

W49A
CH$_3$CCH SMA image
Contours 3.6 cm free free emission

Galvàn-Madrid et al., 2014
W49 A molecular emission

<table>
<thead>
<tr>
<th>Line</th>
<th>Rest freq (GHz)</th>
<th>SMA flux (Jy km s(^{-1}))</th>
<th>Flux scaled @ 10 Mpc</th>
</tr>
</thead>
<tbody>
<tr>
<td>C(^{18})O (2-1)</td>
<td>219.56</td>
<td>1.7 x 10(^4)</td>
<td>0.034</td>
</tr>
<tr>
<td>13CO (2-1)</td>
<td>220.39</td>
<td>1.23 x 10(^5)</td>
<td>0.244</td>
</tr>
<tr>
<td>SO</td>
<td>219.94</td>
<td>3.0 x 10(^3)</td>
<td>0.006</td>
</tr>
<tr>
<td>HC(_3)N</td>
<td>218.32</td>
<td>322</td>
<td>6 x 10(^{-4})</td>
</tr>
<tr>
<td>SO(_2)</td>
<td>221.96</td>
<td>305</td>
<td>6 x 10(^{-4})</td>
</tr>
<tr>
<td>CH(_3)CCH</td>
<td>222.09</td>
<td>33</td>
<td>6 x 10(^{-5})</td>
</tr>
</tbody>
</table>

Observations from Galvàn-Madrid 2014

ALMA sensitivity @ 220 GHz
- 1 km/s resolution
- 8 hrs of integration time
- is 0.4 mJy

CO isotopologues will be very easily detected @ 10 Mpc
@ 100 Mpc 6 \(\sigma\) detections will be possible

Other less abundant molecules could also be observed @ 10 Mpc but not with high S/N
In summary

SKA-1 mid
@ 1.4 GHz would detect both Cas A and W 49 A in galaxies up to 100 Mpc at 1 σ in ~ 2 hrs
@ 5 and 8 GHz 1 hr is enough for a 1 σ detection

ALMA will provide in band 3 a spatial resolution of some pc in galaxies up to 50 Mpc.

CO isotopologues will be very easily detected @ 10 Mpc
@ 100 Mpc 6 σ detections will be possible

Other less abundant molecules could also be observed @ 10 Mpc but not with high S/N

SKA-1 mid will be able to identify GMCs up to 100 Mpc.

SKA 2
20x better resolution
compact HII regions resolved at all frequencies in galaxies at 100 Mpc.
At 10 Mpc scales of 0.1 pc will be accessible
In summary

SKA-1 mid
@ 1.4 GHz would detect both Cas A and W 49 A in galaxies up to 100 Mpc at 1 σ in ~ 2 hrs
@ 5 and 8 GHz 1 hr is enough for a 1 σ detection

SKA-1 mid will be able to identify GMCs up to 100 Mpc.

ALMA will provide in band 3 a spatial resolution of some pc in galaxies up to 50 Mpc.

CO isotopologues will be very easily detected @ 10 Mpc @ 100 Mpc 6 σ detections will be possible

Other less abundant molecules could also be observed @ 10 Mpc but not with high S/N

SKA 2

20x better resolution
compact HII regions resolved at all frequencies in galaxies at 100 Mpc.
At 10 Mpc scales of 0.1 pc will be accessible

The combination of them will make Nearby Galaxies even closer!

Grazie