Overview of Complementarity & Synergy with Other Wavelengths in Cosmology

Keitaro Takahashi
(Kumamoto University)

[on behalf of SKA Cosmology Team]
Ultimate Surveys in SKA Era

- **CMB**
 - B-mode: LiteBird, COrE, B-Pol, EPIC
 - spectrum: PRISM, PIXIE

- **opt/IR**
 - image: Euclid, WFIRST, LSST
 - spectrum: Euclid

- **X-ray**
 - eROSITA

statistical errors dominated
↓

systematic errors & cosmic variance dominated
Ultimate Surveys in SKA Era

- **CMB**
 - B-mode: LiteBird, COrE, B-`Pol, EPIC
 - spectrum: PRISM, PIXIE
- **opt/IR**
- **X-ray**
 - eROSITA

We need to think and collaborate!

statistical errors dominated

↓

systematic errors & cosmic variance dominated
Possible Synergies

- ISW with CMB
- weak lensing with opt/IR
- cluster cosmology with CMB and X-ray
- multi-tracer method with opt/IR and X-ray
Possible Synergies

- ISW with CMB
- weak lensing with opt/IR
- cluster cosmology with CMB and X-ray
- multi-tracer method with opt/IR and X-ray

cross correlation between gals and CMB → probe gravitational potential
Possible Synergies

- ISW with CMB

- weak lensing with opt/IR

- cluster cosmology with CMB and X-ray

\[\tilde{\gamma} = \gamma + \gamma^i + \gamma^s \]

intrinsic shape (Patel+ 2010) integrated polarization angle (Stil+ 2009)

Beck & Hoernes, 1996
Possible Synergies

- ISW with CMB
- weak lensing with opt/IR
- cluster cosmology with CMB and X-ray
- multi-tracer method with opt/IR and X-ray
Possible Synergies

• ISW with CMB
• weak lensing with opt/IR
• cluster cosmology with CMB and
 multi-tracer method with opt/IR

Seljak (2009)
reduce cosmic variance by taking a ratio of δ s of two populations with different bias (halo mass)

$$\delta_1 = b_1\delta_{DM} \quad \Rightarrow \quad \frac{b_2}{b_1} = \frac{\delta_2}{\delta_1}$$

obtain ratio of bias without stochasticity!
→ constraint on primordial non-Gaussianity

Carlton Baugh
Tests of Inflation

- density fluctuations
 - almost scale-invariant
 - tiny deviation from scale invariance
- primordial gravitational wave
 - existence (BICEPII?)
 - spectrum → future CMB experiments
- statistics of fluctuations
 - almost Gaussian
 - tiny non-Gaussianity

SKA will do the final test of inflation!
Multi-tracer method

Ferramacho et al. (2014)

SKA continuum survey

- Star forming galaxies (SFR): $M_{halo} = 1 \times 10^{11} h^{-1} M_{\odot}$
- Starbursts (SB): $M_{halo} = 5 \times 10^{13} h^{-1} M_{\odot}$
- Radio Quiet Quasars (RQQ): $M_{halo} = 3 \times 10^{12} h^{-1} M_{\odot}$
- Radio loud AGN (FRI): $M_{halo} = 1 \times 10^{13} h^{-1} M_{\odot}$
- Radio loud AGN (FRII): $M_{halo} = 1 \times 10^{14} h^{-1} M_{\odot}$

5 tracers
$\rightarrow f_{NL} < 1$

SKA cannot distinguish all populations.
\rightarrow need opt/IR & X-ray!
Multi-tracer method

Yamauchi, KT & Oguri, in preparation
combine SKA & Euclid

SKA: continuum survey
 (5 tracers)
Euclid: imaging survey
 (5 tracers & 8 z bins)

\(f_{\text{NL}} \sim O(0.1)! \)
Planck constraint

nonlinear effects

cyclic model

simple inflation

extended inflation

nonGaussianity

f_{NL}
nonGaussianity

$ f_{NL} $

Planck constraint

SKA1

nonlinear effects

SKA2

cyclic model

extended inflation

simple inflation
confirm our understanding of nonlinear processes

constrain many of extended models and cyclic model

nonGaussianity

f_{NL}

10

1

0.01

Planck constraint

nonlinear effects

SKA1

SKA2

cyclic model

simple inflation

extended inflation
Summary

future ultimate surveys

- **CMB**
 - B-mode: LiteBird, COrE, B-`Pol, EPIC
 - spectrum: PRISM, PIXIE
- **opt/IR**
 - image: Euclid, WFIRST, LSST
 - spectrum: Euclid

- **X-ray**
 - eROSITA

synergies

- ISW with **CMB**
- weak lensing with **opt/IR**
- cluster cosmology with **CMB** and **X-ray**
- multi-tracer method with **opt/IR** and **X-ray**