SKA and the Cradle of Life
Formation of Planets and Search for Extraterrestrial Life

Doug Johnstone - NRC Herzberg
8 January 2019

With much help from Izaskun Jimenez-Serra
Cradle of Life Science Themes

1) How do rocky planets form?

2) How did life originate?

3) What are exoplanets like?

4) SETI project
SKA Big Questions

- **The Cradle of Life & Astrobiology**
 - How do planets form? Are we alone?
- **Strong-field Tests of Gravity with Pulsars and Black Holes**
 - Was Einstein right with General Relativity?
- **The Origin and Evolution of Cosmic Magnetism**
 - What is the role of magnetism in galaxy evolution and the structure of the cosmic web?
- **Galaxy Evolution probed by Neutral Hydrogen**
 - How do normal galaxies form and grow?
- **The Transient Radio Sky**
 - What are Fast Radio Bursts? What haven’t we discovered?
- **Galaxy Evolution probed in the Radio Continuum**
 - What is the star-formation history of normal galaxies?
- **Cosmology & Dark Energy**
 - What is dark matter? What is the large-scale structure of the Universe?
- **Cosmic Dawn and the Epoch of Reionization**
 - How and when did the first stars and galaxies form?
How Do Rocky Planets Form?

- Formation of rocky cores of planets via grain growth and settling
How Do Rocky Planets Form?

- Formation of rocky cores of planets via grain growth and settling

\[\kappa_\nu \propto \nu^{1.5} \]

Testi et al. 2014

Hoare et al. 2015

SKA covers the right \(\lambda \)'s to probe cm-sized grains
How Do Rocky Planets Form?

- Flattening of the spectral index has been observed in discs.

Dust traps help overcome grain growth barriers ➔ ‘spiral density waves’

How Do Rocky Planets Form?

- Using SKA to observe continuum emission for dust in discs

Column Density $N(H_2)$ (Hall+2017; Ilee+2007)

SPH simulation
Gravitationally Unstable Disk (Run2 from Hall+2017)

$M_{\text{disk}} = 0.25 \; M_\odot$

$M_*=1 \; M_\odot$

$t = 4100 \; \text{yrs}$

50 au
How Do Rocky Planets Form?

- Using SKA to observe continuum emission for dust in discs

SPH simulation
Gravitationally Unstable Disk (Run2 from Hall+2017)

\[M_{\text{disk}} = 0.25 \, M_\odot \]
\[M_\ast = 1 \, M_\odot \]

distance = 100 pc

1000 hr integration

Peak = 19 \mu Jy/beam (T_b=115 K)
Noise = 0.07 \mu Jy/beam (T_b=0.4 K)

SKA-Mid Band 5 (64 dishes)

Credit: D. Quenard, C. Hall, J. Ilee

Witnessing the formation of planets
How Do Rocky Planets Form?

- Using SKA to observe continuum emission for dust in discs

Credit: D. Quenard, C. Hall, J. Ilee

MAPPING OF β ACROSS THE SNOW LINE OF WATER

ALMA 1.3 mm

@12 GHz

40 mas beam

Tobin+2016

50 au
How Did Life Originate?

- From the ISM to the Origin of Life

Molecular clouds (Pre-stellar Cores)

Planetary systems

Protoplanetary disks

Complex Organics (COMs)

How complex can organic chemistry become in the ISM and disc? Pre-biotic species!!

Exploring the Universe with the world’s largest radio telescope
How Did Life Originate?

- Complex Organic Molecules (COMs) … in Space

COMs are carbon-based compounds with >6 atoms

(Herbst & van Dishoeck 2009)
How Did Life Originate?

- Complex Organic Molecules (COMs) … in Space

Prebiotic COMs: species believed to be involved in the processes leading to the origin of life

Glycolaldehyde
(CH₂OHCHO)

Formamide
(NH₂CHO)

Amino Acetonitrile
(NH₂CH₂CN)

Simplest naturally occurring amide containing all elements needed for the synthesis of bio-molecules (*Saladino+12,15*)
How Did Life Originate?

- Formamide undetected in discs: SKA will be a pre-biotic COM detector

Simulations of NH_2CHO (gas & solid) in the disk

SPH simulation (Hall+2017; Ilee+2007) +
chemistry of NH_2CHO (Quenard+2018a)

Gas-phase NH_2CHO (Quenard+2018b)
How Did Life Originate?

- Formamide undetected in disks: SKA as a pre-biotic COM detector

Simulations of NH$_2$CHO
(gas & solid) in the disk

SPH simulation *(Hall+2017; Ilee+2007)*

+ chemistry of NH$_2$CHO *(Quenard+2018a)*

Distance = 100 pc
1000 hr integration

Peak = 87 µJy/beam ($T_b = 530$ K)
Noise = 7 µJy/beam ($T_b = 40$ K)

Gas-phase NH$_2$CHO with SKA1

$t = 4100$ yrs

40 mas beam

NH$_2$CHO transition at 13.489 GHz

Credit: D. Quenard, C. Hall, J. Ilee
How Did Life Originate?

• Detection of pre-biotic COMs will be Challenging

Problems:
• High spectral line densities at mm/sub-mm λ’s ⇒ Line blending/confusion!!
• Broad linewidths (a few to some km s⁻¹) ⇒ Line identification problematic

interferometry reduces linewidths

cm λ’s are cleaner

SKA
What are Exoplanets like?

- Planet dynamos \rightarrow large-scale B_{mag} \rightarrow magnetospheres
 - Magnetospheres may be key for habitability of planets ...
- Low-frequency (\sim50 MHz) bursts seen from Jovian planets
 - Cyclotron-Maser Instability Emission (CMI)
What are Exoplanets like?

- Planet dynamos \Rightarrow large-scale B_{mag} \Rightarrow magnetospheres
What are Exoplanets like?

- Planet dynamos \Rightarrow large-scale B_{mag} \Rightarrow magnetospheres

What can we learn??

- Magnetic field strength: planet interior structure
- Tilt of magnetic axis
- Rotation and revolution periods
- Orbit inclination
- Stellar wind activity
- Presence of exo-moons?
What are Exoplanets like?

- Planet dynamos \Rightarrow large-scale $B_{mag} \Rightarrow$ magnetospheres

![Graph showing Flux Density (Jy) vs Frequency (MHz) with SKA1-LOW sensitivity improved by a factor \sim8, a Jupiter-like planet could be detected to \sim10 pc, and \sim200 known stars and \sim35 known exo-planets within this volume.]

SKA Cradle of Life
Searching for Extraterrestrial Life

Exploring the Universe with the world’s largest radio telescope
Searching for Extraterrestrial Life

- Known Technology Detection Limits ...

\(t_{\text{integration}} = 60 \text{ min}, \ SNR = 12 \)

- **SKA1**: high-power airport radars detectable for \(>10^4 \) stars

- **SKA2**: low-power TV and radio stations detectable for a few nearest stars

Siemion et al. 2015

Exploring the Universe with the world's largest radio telescope
Cradle of Life Key Science Projects

KSP 1) Young Stellar Cluster Deep Field - Mapping β across snow lines

- Oph A star-forming cluster: 2/3 Class 0, 7 Class I, 12 Class II
- 1000 hours in SKA1-Mid (Band 5, @12 GHz)
- Angular resolution ~ 40 mas, i.e. 5 au at 125 pc

- Additional Science: Pre-biotic COMs, Jets, 6D Tomography, Magnetic Flaring

KSP 2) Stars, Planets and Civilizations

- Key Obs # 1 (SKA1-LOW): All sources within 25 pc ➔ 2500 hours
- Key Obs # 2 (SKA1-LOW): Selected sample (>25 pc) ➔ 1500 hours
- Key Ob # 3 (SKA1-LOW): Search for low Galactic latitudes ➔ 833 hours

- High commensality with SWGs “Our Galaxy”, “Epoch of Reionization”, “Cosmology” and “Transients”
The Cradle of Life Working Group

<table>
<thead>
<tr>
<th>Name</th>
<th>Institution</th>
<th>Country</th>
<th>Membership Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Izaskun Jimenez-Serra</td>
<td>QMUL (Centro de Astrobiología in 2018)</td>
<td>UK (ESP in 2018)</td>
<td>Co-Chair (i.jimenez-serra AT qmul.ac.uk)</td>
</tr>
<tr>
<td>Doug Johnstone</td>
<td>HIA</td>
<td>Canada</td>
<td>Co-Chair (douglas.johnstone AT nrc-cnrc.gc.ca)</td>
</tr>
<tr>
<td>Melvin Hoare</td>
<td>University of Leeds</td>
<td>UK</td>
<td>Core</td>
</tr>
<tr>
<td>Joseph Lazio</td>
<td>Jet Propulsion Laboratory (JPL)</td>
<td>USA</td>
<td>Core</td>
</tr>
<tr>
<td>Di Li</td>
<td>National Astronomical Observatories, Chinese Academy of Sciences</td>
<td>China</td>
<td>Core</td>
</tr>
<tr>
<td>Sarah Maddison</td>
<td>Swinburne University</td>
<td>Australia</td>
<td>Core</td>
</tr>
<tr>
<td>Subu Mohanty</td>
<td>Imperial</td>
<td>UK</td>
<td>Core</td>
</tr>
<tr>
<td>Ian S Morrison</td>
<td>Swinburne University</td>
<td>Australia</td>
<td>Core</td>
</tr>
<tr>
<td>Laura Perez</td>
<td>Universidad de Chile</td>
<td>Chile</td>
<td>Core</td>
</tr>
<tr>
<td>Andrew Siemion</td>
<td>ASTRON/Berkeley</td>
<td>NL/USA</td>
<td>Core</td>
</tr>
<tr>
<td>Huib van Langevelde</td>
<td>Joint Institute for VLBI in Europe (JIVE)</td>
<td>Netherlands</td>
<td>Core</td>
</tr>
<tr>
<td>Josep M. Trigo-Rodriguez</td>
<td>Institute of Space Sciences (ICE)</td>
<td>Spain</td>
<td>Core</td>
</tr>
<tr>
<td>Philippe Zarka</td>
<td>Observatoire de Paris</td>
<td>France</td>
<td>Core</td>
</tr>
</tbody>
</table>

+ 33 associate members from 15 countries
Cradle of Life Science Themes

1) How do rocky planets form?

2) How did life originate?

3) What are exoplanets like?

4) SETI project
SQUARE KILOMETRE ARRAY
Exploring the Universe with the world’s largest radio telescope